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Anomalous Behavior of a Scalar Particle in a Globally 
Regular Space-Time of a Schwarzschild Black Hole 
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The curved space-time Klein-Gordon equation in a globally regular space-time 
of a Schwarzschild black hole is solved, and its exact solution is obtained. The 
wave functions of a scalar particle inside the black hole are discussed by means 
of numerical analysis. The anomalous behaviors of the scalar particle in the 
central region of the black hole and in the interior neighborhood of the 
Schwarzschild event horizon are studied with the help of approximate solutions, 
which are compared with the exact one in these two regions. 

1. INTRODUCTION 

Recently, great attention has been paid to the globally regular space- 
time metric of  a black hole (Shen and Zhu, 1985) and the behavior of  a 
particle outside and inside a Schwarzschild black hole (Zhu and Shen, 
1986). Gonzales-Diaz (1981) has presented the space-time metric inside the 
Schwarzschild black hole. The metric has the two most interesting features 
of  strong attractions: an ultraviolet free-field asymptotic behavior for r = 0 
and an infrared divergence for the event horizon r = Rs. A new concept of 
the globally regular solution of the Einstein field equations has recently 
been presented (Shen and Zhu, 1985), namely, that the solutions of the 
Einstein field equations which are free from singularities and satisfy the 
dominant energy condition are the globally regular solutions. An equation 
of  state not satisfying the strong energy condition (Hawking and Ellis, 1973) 
can still be considered as physically reasonable. For instance, the equation 
of  state P = - p  may describe mesons in the relativistic dense state (Hakim, 
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1978). Kofinti (1984) has calculated the form of the wave function of a 
scalar particle in the exterior neighborhood of  the Schwarzschild event 
horizon. Although the radial wave function of  a scalar particle is accom- 
panied by an infinite phase factor, its probabili ty density remains finite. 
Hence, the event horizon is asserted to be physically nonsingular. The study 
of  the geodesic motion of  a test particle has shown that an infinite potential 
barrier occurs at the center of  the black hole for a particle with nonzero 
angular momentum,  and that there exists a classical trivial solution r = 0 
for a particle with zero angular momentum (Zhu and Shen, 1986). In view 
of the globally regular solution for a black hole with homogeneous body 
distributions, it is interesting to investigate further the characteristics of  a 
scalar particle in the space-time with this kind of  metric. 

This paper  is devoted to the study of the behavior of  a scalar particle 
in globally regular space-time of a Schwarzschild black hole. The curved 
space-time Kle in -Gordon  equation is solved, and its exact solution in the 
whole interior of  a Schwarzschild black hole is found. The wave function 
and the corresponding probabili ty density of  a scalar particle inside the 
black hole are discussed with the aid of  numerical analysis. The explicit 
approximate  expressions for the radial wave functions in the interior neigh- 
borhood of  the event horizon and in the central region of the black hole 
are obtained so as to reveal clearly the anomalous behavior of  a scalar 
particle in these two regions. The results predicted by these expressions are 
compared with the exact solution. 

2. K L E I N - G O R D O N  WAVE EQUATION IN T H E  
S C H W A R Z S C H I L D  INTER IOR  SPACE-TIME 

The curved space-time Kle in -Gordon  wave equation for a scalar par- 
ticle of  rest mass ~ can be written as 

(_g),/2g a,(t, xl, x2,x3)=o (1) 

in units h = e =  G =  1, where @ (t, Xl, x2, x3) is the wave function of the 
particle. 

A Schwarzschild black hole with mass M has the interior metric given 
by (Shen and Zhu, 1985) 

d s  2 = (1 - r 2 / R ] )  d t  2 - (1 - r 2 / R 2 )  -1 d r  2 - r 2 ( d 0 2 +  sin 2 0 &b 2) (2) 

in spherical polar  coordinates (t, r, 0, ~b), where R~ = 2 M  is the radius of  
the Schwarzschild black hole. 
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In the metric (2), the wave equation (1) takes the form 

r 2]-1 0 2 r 2 d 2 2{1 r 2 0 
[ ( 1 - ~ 2 ]  ~t2-(1-R--~ 2) ~ r Z - r \  - 2 ~ 2 )  -0r 

-r-5~-~+ctgO-~-~ sin~ OO~- ~ +t~ ~ 4~=0 (3) 

If the wave function ~b(t, r, O, ~b)) can be expressed as 

qb(t, r, 0, th) = T(t)R(r)O(O, &) 

then equation (3) can be separated into lhe following three equations: 

d2T(t) 
dt 2 ~-w 2T( t ) =0  (4) 

1 r2"~2 d2Rz 2[  r 2 
-~-5,2) -~-r2 + r  [1-~-~,2)( '1-2r2~ dR, 

[: 0 1 :  ] 
0 o-~+sin-~ 0 o6 2 - ~ + c t g  ~- L ( L §  OLin=0 (6) 

where w is a separation constant, correspoadiag to the frequency of  the 
wave, and L is a nonnegative integer, relating to the orbital angular momen- 
tum quantum number of the scalar particle. Equations (4) and (6) have the 
solutions 

T( t) = a e-iWt + b e iw' (7) 

OLin(O, ~b) = I:~ (COS 0) exp(im~b) (8) 

where a and b are arbitrary constants, Y~ (cos 0) are spherical harmonics, 
and m is the magnetic quantum number, an integer such that Ira I_< L. Hence 
the wave equation (3) has the eigensolutions 

r r, O, 4~)= NRt.(r) Y"~(cos O) exp[i(m~b • wt)] 

where RL(r) is a solution of the radial wave equation (5), and N is a 
normalization factor. 

The probability current density of a scalar particle can be defined as 

i (  , o 0_**)  
J"= a, : (9) 

to satisfy the conservation equation 

O;J ~" = 0 (10) 
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where 0;~ denotes the covariant derivative in the curved space-time. Only 
the positive frequency term in (7) will be retained, so as to avoid negative 
probability problems. Then the probability density is 

i 
P = J ~  2/z [iWdP*dP-~Pr =--W[qb[z-->0/x 

3. EXACT RADIAL S O L U T I O N  INSIDE THE S C H W A R Z S C H I L D  
BLACK HOLE 

The radial equation (5) can be rewritten as 

d 
- ~ ( 1 - - ~ ) ' d r r [ r 2 ( 1 - L R E ~ ) d R L ] + ( w Z - ( 1 - - ~ ) [  I z 2 + L ( L + d r  J r 2 1)3} RL=0 1 

(11) 

By putting 

gL(r )  = UL( r ) / r  

the radial equation (11) becomes 

d (1- -~-~ ) d-~r [ (1- -~--~ ) d UL ] + { w2 - (1- -~-~ ) [ tz 2 -~ L ( L + l .[ r 2 22]}  UL 

=0 (12) 

Finally, the substitution 

x = r / R s  (0--<x--< 1) 

reduces equation (12) to the form 

d d u l l  f 2 [ L ( L + I )  
, - 

where w - wR~ and p = (2 - ~2R~). 
A inspection shows that the solution of equation (13) can be expanded 

in a series 

UL(X ) = asX s + as+iX s+l q- . �9 �9 q- as+kX s+k + .  �9 �9 (14) 

with as r 0. Inserting equation (14) into (13) yields the set of equations 

S ( S -  1)a~ = L ( L +  1)a~ 

(S+ 1)Sa~+~ = L ( L +  1)a~+l 

(S+ 2)(S+ 1)a~+2- (S  + 1)Sas - S ( S -  1)as 

= L ( L +  1)(a~+2- a~) - to2as -pa~  

(15) 

(16) 

(17) 
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( S +  3 ) ( S +  2)a~+3 - (S + 2)(S + 1)as+~- ( S +  1)Sa,+l 

= L ( L +  1)(a~+3- a~+l) - w2a~+l -pa,+l 

( S +  k +  2 ) ( S +  k +  1)a~+k+2-- ( S +  k + 1 ) ( S +  k)as+k 

- (S+  k ) ( S +  k - 1) a,+k + ( S +  k - 1 ) ( S +  k - 2)a,+k-2 

= L ( L +  1)(a~+k+2-- as+k) -- w2a,+k --p(a,+k -- as+k-2) 

It is easy to obtain two roots f rom equat ion (15), that  is, 

$1 = L + I  

and 

S2= - L  

together with another  solution from equat ion (16) 

as+~ = 0 

It may  be 
relations: 
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(18) 

(19) 

(20) 

(21) 

(22) 

proved that  the coefficients satisfy the following recurrence 

2(s + 2m - 2) 2 - L ( L +  1) - w e - p  
as+z , . -  ( s + 2 m ) ( s + 2 m - 1 ) - L ( L + l )  as+2,.-2 

p - ( s +  2 m - 3 ) ( s +  2 m - 4 )  -+ 
(s + 2m)( s  + 2m - 1) - L ( L +  1) as+2,.-4 

as+2m-3 ~ 0 

2s2-  L (L  + l ) - w 2 - p  
as+2 - (s + 2 ) ( s  + 1) - L ( L +  1) a, 

(23) 

where m = 2, 3, 4 , . . .  and a, ~ 0. Since 

R = lim [as+2m-ffas+2,,[ = 1 (24) 
r n ~ e o  

the solution (14) o f  equat ion (13) is analytic in the region 0 < - x _  < 1. 
I f  we require that the radial wave functions are square integrable in 

the central region of  the black hole, then the solution o f  equat ion (11) can 
be written as 

Rm(r)=]r~ u " ~ 1 7 6  r ,-,,,,oo for L = 0  (25) 

I / ' ~  / _ _ \  

[~----~tOh~[--~-} for L - 1  (26) l r  ~Ks/ 
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with 

Dh,om(X) = x L+' 
\ m = O  

(27) 

and 

(2) b2m_LX2m Dh~,L(X) = X -L 
0 

(28) 

The coefficients in equat ions (27) and (28) satisfy the recurrence rela- 
t ions 

2 ( L +  1 + 2 m )  2 -  L ( L +  1) - t o 2 _ p  

aL+~+2,.-- ( 2 m + L + I ) ( 2 m + L ) - L ( L + I )  aL+2m-1 

( L + 2 m - 2 ) ( L + 2 m - 3 ) - p  

( L +  2m + 1 ) ( L +  2m) - L ( L +  1) aL+2m-3 (29) 

and 

2(2m - L -  2) 2 - L ( L +  1) - to2 _ p ,  
b2,,,-L-- ( - ~ m - - - - L ) - - ~ m - - ' ~ - ~ - - - L ~  Ozm-t-2 

( 2 m - L - 3 ) ( 2 m - L - 4 ) - p  

(2m - L)(2m - L -  1) - L ( L +  1) 
bE,.-L-4 (30) 

with ak=O for  k < L + l  and  b, = 0  for n < - L .  
In order  to gain an insight into the behavior  o f  a scalar particle inside 

the Schwarzschi ld black hole, we per form numerical  analysis o f  the func- 
t ions (1) (2) (1) x Dho, L(X). Figure 1 shows Dho, L( ) for at+,  Dh~,L(X) and = 1, p = 1.50 

= Dho, t ( x )  for  a-L = 1, and to 10 and different values o f  L. Figure 2 shows (2) 
p = 1.50, to = 10, and L = 0, 1. 

As can be seen f rom Figures 1 and 2, Dh~)t(x) and Dh(,o2)t(x) are analytic 
funct ions o f  x inside the black hole including the event horizon.  Besides, 

(1) X (2) Dh,oL(X) are if Dh~L( ) and considered as functions o f  to and L, they are 
also analytic for all possible values o f  to and L. 

N o w  we can see that  for  a particle with zero orbital angular  m o m e n t u m  
an infinite potential  pit occurs  in the central region of  the black hole. 
However ,  RL(r) for L - - 1  tends to zero when r ~ 0 ,  and consequent ly  a 
particle with nonzero  orbital angular  m o m e n t u m  cannot  reach the center. 
The distance o f  the first m a x i m um  apart  f rom the origin increases with the 
increase o f  L. I f  L is large enough,  the radial wave functions will at tenuate 
in an exponent ia l  way. 
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Dh('J~(,~ ) ( x,o 3) 
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Fig. 1. Plot of  (l) Dh~L(x) as a func t ion  of  x for  aL+ 1 = 1, p = 1.50, oJ = 10, and  different  va lues  

of  L. 

Moreover ,  as r ~ Rs, [Rt(r)[  remains  finite. Hence  the radial  probabi l i ty  
densi ty at r = R, is l imited,  and the event hor izon  is physical ly  nonsingular .  
The wave funct ion with relatively high f requency,  which is a c c o m p a n i e d  
by  a divergent  phase  fac tor  near  the event  horizon,  appears  as a rapidly  
oscillating state. Fur thermore ,  the probabi l i ty  densi ty reduces all at once 
within a very small  range near  the event horizon.  Therefore ,  the state o f  a 
scalar  part icle is localized a round  the event  horizon.  The scalar  part icle  
with larger L is localized in the nar rower  region. 

(1) Dho, L(X) as a funct ion of  x is calculated for  a t+l  = 1, p = 1.50, L = 1, 
and oJ ranging f rom 0 to 2.0, and two graphs for  (o = 0 and  2.0 are shown 
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~=0 ~=/o (• 

8.o 
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2.o 

~-~  OJ =10 

I,O 

Fig. 2. Plot of Dh~(x)  as a function o f x  for a_L=l , p =  1.50, o)=10, and L=O, 1. The 
" x  10" above the curve indicates a factor of ten amplification of the longitudinal scale. 

Dh,,,L(x) for smaller oJ is farther from in Figure 3. The first maximum of (1} 
(1) the center. But Dh,oL(x) for ~o ---0 is a monotone function of  x, and then 

the wave function of a scalar particle attenuates in an exponential way. 
In the region between the event horizon and the center of  the black 

hole, the wave function with smaller L and larger w will appear as an 
oscillating state with variable frequency and constant amplitude. However, 
the wave function with larger L and smaller w will reduce in an exponential 
way near the event horizon, and almost no penetration will take place at 
the event horizon. 

In order to reveal clearly the anomalous behavior of a scalar particle 
in the interior neighborhood of  the event horizon and in the central region 
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Fig. 3. Plot of Dh~)L(x) as a function of x for aL+ 1 = l, p = 1.50, L = 1, and to = 0, 2.0. The 
"x 10" above the curve indicates a factor of ten amplification of the longitudinal scale. 

of  the black hole, we study the explicit approximate expressions for the 
radial wave function in these two regions. 

4. RADIAL SOLUTION IN THE INTERIOR N E I G H B O R H O O D  
OF THE EVENT H O R I Z O N  

In the interior neighborhood of the event horizon, the radial wave 
equation (5) can reduce to 

(31) 

with 

l [  3L(L+I)] 2 J' 1 (  2 L ( L +  1).) 
b = - ~  2 R s / z z +  R~ ' 1 2 n 2  

C -----~W /K s 

(32) 

where z = Re  - r, z / R s  << 1, and terms of  order ( z 3 / R s )  and its higher-order 
terms are neglected. 

Equation (31) is a confluent hypergeometric differential equation which 
on integration leads to a confluent hypergeometric function in the general 
case and to a Bessel function (Kofinti, 1984) in the particular case. 

If 

2 3 L ( L + I ) ] 4 R ~  
Q =  /~ RE - ~ - # 1  (33) 
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the solution of equation (31) is 

yL(z) = e x p ( - i w R s z  In z ) e x P { 4 - ~  [1 - (1 + A)~/2]z } 

X { CL IFI[a, T,-~Rs (I'+ A)I/2z ] 

+Dt exp(iwRs) In z ) , F , [ 1  + a - y, 2 -  y, ~-~ (1 + 7  A),/2z]} 

where 

(34) 

i 4R~ F3L(L+ 1) ] 7 q=+~wRs, A=- L ~s  Ix2 ' P = ~ s  [ 1 -  (1 + A)1/2] 

2pq + p + b - 7q/2gs 
a - (2p - 7/2Rs) ' y =  1+2q (35) 

CL and DL (L--0,  1, 2, 3 , . . . )  are arbitrary constants. On the other hand, 
if Q = 1, the solution of equation (31) is 

e (7/4R~)z ALJ~ z 2L(L+ yL(z)= { [K (7-2R2/~2-  1)] 

+ BLJ-,,[-~ (7- 2R21x2- 2L( L + l ) ] } (36) 

where v = +iwR~. 
However, if we use the boundary condition in Kofinti (1984) that the 

waves at r = R~ are pure ingoing (i.e., there is no scalar rediation from the 
black hole), then the constants DL (L = 0, 1, 2, 3 , . . . )  will be zero. 

The solution (34) has a phase factor which is divergent in logarithmic 
form at the event horizon and the corresponding radial probability current 
density is 

.(L) o + _ l l m  y*(z) oc-~oo (37) J r  z =  
z 

Thus, the black hole behaves like a big trap for the scalar particle, and all 
particles would be absorbed into the black hole from out of the event 
horizon. But the radial probability density at the event horizon 

P(rL)tz=O+=-~tyL(z)121 z=O + (38) 

is finite. Equation (34) shows that the wave function with larger L (i.e., 
A >> 1) has weak penetration and rapid attenuation. Hence the scalar particle 
with larger L is localized near the event horizon. These results are identical 
with those given by the exact solutions (25)-(30) and the numerical analysis. 
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5. RADIAL S O L U T I O N  IN THE CENTRAL REGION OF THE 
BLACK HOLE 

In the central region of the Schwarzschild black hole (i.e., r<< 1), the 
terms in equation (5) 

(2/r)(1 - r2/ R2)(1- 2rE/ g~) dRg/ dr 

and 

(1 - r2/R 2) [L(L+  1)/r2]RL 

become very large. In making the approximation, the small quantity (r2/R~) 
in metric (2) and in equation (5) is retained so as to avoid an excessive 
error. When L-> 1, and the higher-order terms of (r2/R 2) are neglected, the 
radial wave function can reduce to 

2 dERL dRL r -~rE +2r--~r +[(w2--tz 2 2L(L+ I) )r2-L(L+ (39) 

When 

k2=(w2 1.~ 2 2 L ( L + I ) ]  ->0 
g~ J 

the solution of equation (39) is 

gt(r) = ALjL(kr) (40) 

and when 

we have 

p2 [ 2 2 L ( L + I )  + >>-0 

RE(r) = A'Lim(pr) (41) 

Here jt(kr) and ig(pr) stand for the spherical Bessel functions with real 
and imaginary variables, respectively. Clearly, either (40) or (41) satisfies 
RL(0) ---- 0, and consequently no scalar particle with nonzero orbital angular 
momentum will occur at the center of the black hole (see Figure 1). 

In general, the condition p2~ 0 is satisfied for particles with lower 
frequency and large orbital angular momentum. Then the wave function 
does not reach the minimum except at the origin. Nevertheless, under the 
condition k2---0 we have the following recurrence relation (Abramowitz 
and Stegun, 1964): 

djL(X) LjL(X)--XjL+,(X) 
(42) 

dx x 
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for the particle with smaller L and larger w. The wave function reaches the 
extreme value at the position determined by 

LjL( krm) - kr,.jL+~( krm) = 0 (43) 

from equation (43) we obtain the position of the first maximum 

1 r 2 L ( 2 L + 5 ) ] l / 2  
r m = ~ L  ~ j (44) 

where t e r m s  o(r 3) are ignored. Only particles with lower orbital angular 
momentum and higher energy can penetrate into the region near the center. 
The distance of the first maximum away from the origin increases with L 
(see Figure 3). 

When L = 0, and the higher-order terms of order (r2/R 2) are ignored, 
the radial wave equation takes the form 

2 d2Ro dRo F 2 2 2 r4 
r --~-r2 +2r- -~r  + [ ( w  - / z  )r +--s176 J (45) 

When 

and we put 

k2 = ( w2-  /z2) >_ O 

~ ~1/2 

Ro(r) = \-2-~r/ uo(kr) 

the radial wave equation reduces to 

r2 d2uo+ duo+ (k2r 2_~)uo = 0 
dr 2 r d-T 

Then we find 

Ro(r) = AoJo(kr) + Boh(ol)(kr) 

where h(ol)(kr) is the Hankel function. When 

p 2 = / Z 2 - -  W 2 ~  0 

we have 

(46) 

(47) 

/ \ 1/2 / \ 1/2 
t "n" t 71" .o,r =aol  ) ) 

where !• ) a r e  Bessel functions with imaginary variables. 
For scalar particle with zero orbital angular momentum an infinite 

potential pit occurs at the center of the black hole because the solutions 
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(47) and (48) yield RL(0)-~ o0, which corresponds to the fact that all zero 
orbital angular momentum particles are absorbed by the singularity at the 
origin. 

The results obtained here are consistent with the exact solutions (25)- 
(30). As r ~ 0 .  The exact solutions give 

I t-'~ L t  n L + l  

I t4,aL+lr / r , ,  for L--- 1 

RL(r)=tCoal/Rs+,dobo/r for L=O 

The above expressions accord with the spherical Bessel functions in the 
central region of the black hole. 

6. CONCLUSION 

We have found the stationary and localized states of a scalar particle 
and the corresponding continuous energy spectra. It can be proved that no 
bound state of the scalar particle exists inside the Schwarzschild black bole. 
In fact, if  we make the substitution 

r/Rs =th(r*/Rs),  O -  r* <o0 (50) 

equation (12) reduces to the wave function equation with an independent 
variable r*, 

dEuL(r *) 
dr,---------- T -  + [w 2 - U(r*)]uL(r*) = 0 (51) 

o 

Fig. 4. Effective po ten t ia l  curves  for L = 0 and  L # O. 

,-"/es 
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where the effective potential  U(r*) is given by 

2 2 U(r,)=[l_th2(r~s)][(l~ __~) q L(L+I)l 
R ~ R , ) J  (52) 

As shown in Figure 4, the effective potential  decreases monotonica l ly  with 
r* within the range 0 - r * <  oo. The effective potential  does not  reach the 
extreme value except at the event horizon r = Rs. This implies that  no b o u n d  
state o f  the scalar particle exists inside the Schwarzschild black hole. It 
should  be emphas ized  that  the bound  states o f  the particle can emerge 
inside the black hole under  certain condit ions which we will discuss else- 
where. 
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